Aliases: C4⋊(C32⋊C4), (C3×C12)⋊2C4, C3⋊S3.4D4, C3⋊S3.2Q8, C32⋊3(C4⋊C4), C3⋊Dic3⋊5C4, (C4×C3⋊S3).9C2, (C3×C6).4(C2×C4), C2.5(C2×C32⋊C4), (C2×C32⋊C4).3C2, (C2×C3⋊S3).9C22, SmallGroup(144,133)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊S3 — C2×C3⋊S3 — C2×C32⋊C4 — C4⋊(C32⋊C4) |
Generators and relations for C4⋊(C32⋊C4)
G = < a,b,c,d | a4=b3=c3=d4=1, ab=ba, ac=ca, dad-1=a-1, dcd-1=bc=cb, dbd-1=b-1c >
Character table of C4⋊(C32⋊C4)
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 9 | 9 | 4 | 4 | 2 | 18 | 18 | 18 | 18 | 18 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | i | -i | i | -i | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -i | i | -i | i | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -i | -i | i | i | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | i | i | -i | -i | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ11 | 4 | 4 | 0 | 0 | -2 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | 1 | -2 | -2 | orthogonal lifted from C32⋊C4 |
ρ12 | 4 | 4 | 0 | 0 | 1 | -2 | 4 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | -2 | -2 | 1 | 1 | orthogonal lifted from C32⋊C4 |
ρ13 | 4 | 4 | 0 | 0 | 1 | -2 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | 2 | 2 | -1 | -1 | orthogonal lifted from C2×C32⋊C4 |
ρ14 | 4 | 4 | 0 | 0 | -2 | 1 | -4 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | -1 | -1 | 2 | 2 | orthogonal lifted from C2×C32⋊C4 |
ρ15 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | 3i | -3i | complex faithful |
ρ16 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 3i | -3i | 0 | 0 | complex faithful |
ρ17 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | -3i | 3i | complex faithful |
ρ18 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | -3i | 3i | 0 | 0 | complex faithful |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(5 21 10)(6 22 11)(7 23 12)(8 24 9)
(1 19 14)(2 20 15)(3 17 16)(4 18 13)(5 21 10)(6 22 11)(7 23 12)(8 24 9)
(1 22)(2 21)(3 24)(4 23)(5 20 10 15)(6 19 11 14)(7 18 12 13)(8 17 9 16)
G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (5,21,10)(6,22,11)(7,23,12)(8,24,9), (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,21,10)(6,22,11)(7,23,12)(8,24,9), (1,22)(2,21)(3,24)(4,23)(5,20,10,15)(6,19,11,14)(7,18,12,13)(8,17,9,16)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (5,21,10)(6,22,11)(7,23,12)(8,24,9), (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,21,10)(6,22,11)(7,23,12)(8,24,9), (1,22)(2,21)(3,24)(4,23)(5,20,10,15)(6,19,11,14)(7,18,12,13)(8,17,9,16) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(5,21,10),(6,22,11),(7,23,12),(8,24,9)], [(1,19,14),(2,20,15),(3,17,16),(4,18,13),(5,21,10),(6,22,11),(7,23,12),(8,24,9)], [(1,22),(2,21),(3,24),(4,23),(5,20,10,15),(6,19,11,14),(7,18,12,13),(8,17,9,16)]])
G:=TransitiveGroup(24,238);
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(5 21 10)(6 22 11)(7 23 12)(8 24 9)
(1 19 14)(2 20 15)(3 17 16)(4 18 13)(5 21 10)(6 22 11)(7 23 12)(8 24 9)
(1 24 3 22)(2 23 4 21)(5 20 12 13)(6 19 9 16)(7 18 10 15)(8 17 11 14)
G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (5,21,10)(6,22,11)(7,23,12)(8,24,9), (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,21,10)(6,22,11)(7,23,12)(8,24,9), (1,24,3,22)(2,23,4,21)(5,20,12,13)(6,19,9,16)(7,18,10,15)(8,17,11,14)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (5,21,10)(6,22,11)(7,23,12)(8,24,9), (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,21,10)(6,22,11)(7,23,12)(8,24,9), (1,24,3,22)(2,23,4,21)(5,20,12,13)(6,19,9,16)(7,18,10,15)(8,17,11,14) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(5,21,10),(6,22,11),(7,23,12),(8,24,9)], [(1,19,14),(2,20,15),(3,17,16),(4,18,13),(5,21,10),(6,22,11),(7,23,12),(8,24,9)], [(1,24,3,22),(2,23,4,21),(5,20,12,13),(6,19,9,16),(7,18,10,15),(8,17,11,14)]])
G:=TransitiveGroup(24,239);
C4⋊(C32⋊C4) is a maximal subgroup of
C3⋊S3.2D8 C3⋊S3.2Q16 C4.PSU3(𝔽2) C4.2PSU3(𝔽2) C8⋊(C32⋊C4) C3⋊S3.4D8 C3⋊S3.5D8 C3⋊S3.5Q16 S32⋊Q8 S32⋊D4 C4.3PSU3(𝔽2) C4⋊PSU3(𝔽2) (C6×C12)⋊5C4 D4×C32⋊C4 Q8×C32⋊C4 C33⋊(C4⋊C4) C33⋊9(C4⋊C4)
C4⋊(C32⋊C4) is a maximal quotient of
C8⋊(C32⋊C4) C3⋊S3.4D8 (C3×C24).C4 C8.(C32⋊C4) (C3×C12)⋊4C8 C32⋊5(C4⋊C8) (C6×C12)⋊2C4 C4⋊(He3⋊C4) C33⋊(C4⋊C4) C33⋊9(C4⋊C4)
Matrix representation of C4⋊(C32⋊C4) ►in GL4(𝔽5) generated by
3 | 3 | 4 | 0 |
2 | 3 | 0 | 1 |
1 | 3 | 2 | 3 |
3 | 4 | 2 | 2 |
0 | 3 | 4 | 2 |
4 | 2 | 3 | 2 |
1 | 1 | 4 | 3 |
3 | 3 | 4 | 0 |
4 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 4 |
4 | 2 | 2 | 0 |
3 | 3 | 2 | 4 |
4 | 4 | 2 | 0 |
4 | 2 | 1 | 1 |
G:=sub<GL(4,GF(5))| [3,2,1,3,3,3,3,4,4,0,2,2,0,1,3,2],[0,4,1,3,3,2,1,3,4,3,4,4,2,2,3,0],[4,0,4,0,0,0,0,4,1,0,0,0,0,1,0,4],[4,3,4,4,2,3,4,2,2,2,2,1,0,4,0,1] >;
C4⋊(C32⋊C4) in GAP, Magma, Sage, TeX
C_4\rtimes (C_3^2\rtimes C_4)
% in TeX
G:=Group("C4:(C3^2:C4)");
// GroupNames label
G:=SmallGroup(144,133);
// by ID
G=gap.SmallGroup(144,133);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,3,24,121,55,3364,256,4613,881]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^3=c^3=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,d*c*d^-1=b*c=c*b,d*b*d^-1=b^-1*c>;
// generators/relations
Export
Subgroup lattice of C4⋊(C32⋊C4) in TeX
Character table of C4⋊(C32⋊C4) in TeX